Secure Communication Channel Establishment TLS 1.3 (over TCP Fast Open) vs. QUIC

ESORICS 19 Full version accepted to JoC

Shan Chen

Samuel Jero

Matthew Jagielski

Alexandra Boldyreva

Cristina Nita-Rotaru

Northeastern University

Secure Communication and Authentication

Public Key Infrastructure (PKI)

Secure Communication and Authentication

Public Key Infrastructure (PKI)

• The user is not involved in the secure channel establishment.

Secure Communication and Authentication

- In the real world, secure channel establishment is more complicated:
 - session resumption, key exchange encryption, channel protocol composition...

Current Deployed Standard: TLS 1.2

Current Deployed Standard: TLS 1.2

Why Low Latency?

...

- Every **100ms** of latency cost Amazon 1% in sales. [Linden06]
- Every 100ms delay in website load time can hurt conversion rates by 7% – that is a significant 6% drop in sales [Akamai17]

[1 RTT from New York to London takes ~70ms]

Important Low-Latency Protocols

- TLS 1.3 (over TCP)
 - new standard: proposed in 2018 to replace TLS 1.2
- QUIC (over UDP)
 - designed by Google and implemented in Chrome since 2012
- QUIC[TLS] (over UDP)
 - IETF-draft: new QUIC design by Mozilla that uses TLS 1.3's key exchange but keeps QUIC's transport functionalities

Protocol Description

TLS 1.3

Initial Full Handshake (1-RTT)

Resumption (0-RTT) 0 latency

TLS 1.3 / TCP

TLS 1.3 / TCP Fast Open (TFO)

Initial Full Handshake (2-RTT)

Resumption (0-RTT) 0 latency again!

QUIC

Initial Full Handshake (1-RTT)

Resumption (0-RTT) 0 latency

QUIC / UDP

Initial Full Handshake (1-RTT)

Resumption (0-RTT) 0 latency

Latency Comparison

Layered Protocols	Full Connection	Resumption Connection
TLS 1.2 / TCP	3-RTT	2-RTT
TLS 1.3 / TCP	2-RTT	1-RTT
TLS 1.3 / TFO	2-RTT	0-RTT
QUIC / UDP	1-RTT	0-RTT
QUIC[TLS] / UDP	1-RTT	0-RTT

Latency Comparison

Layered Protocols	Full Connection	Resumption Connection
TLS 1.2 / TCP	3-RTT	2-RTT
TLS 1.3 / TCP	2-RTT	1-RTT
TLS 1.3 / TFO	2-RTT	0-RTT
QUIC / UDP	1-RTT	0-RTT
QUIC[TLS] / UDP	1-RTT	0-RTT

How to compare the security of the low-latency protocols?

Prior Works: TLS 1.3 vs QUIC

- TLS 1.3 security:
 - secure in the Multi-Stage Key Exchange (MSKE) model [FG14] [DFGS15] [DFGS16] [LXZFH16] [FG17]
 - composition: secure key exchange + secure symmetric-key channel
 - caveat: does NOT work for the full handshake due to phase dependency
- QUIC security:
 - secure in the MSKE model [FG14]
 - similar composition issue
 - secure in the Quick Authenticated and Confidential Channel Establishment (QACCE) model [LJBN15]

- TLS 1.3 vs QUIC: similar security guarantees
- However...

- TLS 1.3 vs QUIC: similar security guarantees
- However...
- What about security of layered protocols? TLS 1.3/TFO vs QUIC/UDP
 - no universal model to compare "layered" security

- TLS 1.3 vs QUIC: similar security guarantees
- However...
- What about security of layered protocols? TLS 1.3/TFO vs QUIC/UDP
- No formal understanding of their availability security, i.e., any malicious attacks except packet dropping should be detected...
 - no security model to capture availability properties
 - TCP Fast Open (TFO) has not been formally analyzed

- TLS 1.3 vs QUIC: similar security guarantees
- However...
- What about security of layered protocols? TLS 1.3/TFO vs QUIC/UDP
- No formal understanding of their availability security, i.e., any malicious attacks except packet dropping should be detected...

How to compare the availability security of low-latency layered protocols?

Security Comparison

Recall: Provable Security Approach

- How to analyze the security of a protocol?
 - Define protocol syntax, i.e., what is a protocol.
 - general enough to fit TLS 1.3/TFO, QUIC/UDP, QUIC[TLS]/UDP
 - Define security model, i.e., adversarial abilities and security goals.
 - security goals to capture availability properties
 - Prove security by reduction or identify attacks.

Step 1: Protocol Syntax

Multi-Stage ACCE (msACCE)

Step 2: Security Model

• Messages are transmitted over the network via packets:

• What are the adversarial abilities?

• Classical security goals:

Step 3: Provable Security Results

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	√ ⊖

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	\checkmark

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	\checkmark

TCP Fast Open (TFO) Security Result

• Theorem. TLS 1.3 over TFO achieves IP-Spoofing Prevention if

- cookie generation function is a **PRF** (AES-128)
- TCP sequence number size is big enough against online guessing attacks

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention	\checkmark	\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	\checkmark

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X 🕼
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	√ ⊖

QUIC[TLS] **TFO Cookie Removal** TLS 1.3 QUIC Layered Protocols TFO UDP UDP X 🗊 **KE Header Integrity** Х Х Initial Full Handshake (2-RTT) **Resumption (0-RTT)** TCP SYN TCP SYN +tfo_cookie TCP SYN-ACK ClientHello +tfo_cookie +tls_ticket **TCP SYN-ACK** ClientHello **Encrypted Data** ServerHello ServerHello ServerFinished ServerFinished ClientFinished ClientFinished **Encrypted Data** +tls_ticket

TFO Cookie Removal

Layered Protocols	TLS 1.3	QUIC	QUIC[TLS]
	TFO	UDP	UDP
KE Header Integrity	X 🗊	X	Х

Resumption (0-RTT -> 1-RTT)

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	\checkmark

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	√ ⊖

QUIC[TLS] Security Result

• Theorem. QUIC[TLS] over UDP achieves Reset Authentication if

- reset token generation function is a **PRF** (AES-128)
- Channel Security holds
- reset token size is big enough against online guessing attacks

Layered Protocols	TLS 1.3 TFO	QUIC UDP	QUIC[TLS] UDP
Server Authentication	\checkmark	\checkmark	\checkmark
Channel Security	\checkmark	\checkmark	\checkmark
IP-Spoofing Prevention		\checkmark	\checkmark
KE Header Integrity	X	X	X
KE Payload Integrity	\checkmark	X	X
SC Header Integrity	X	\checkmark	\checkmark
Reset Authentication	X	X	\checkmark

Summary

Summary

- Propose the **first** security model that comprehensively capture **availability** properties of **layered** protocols.
- Provide thorough provable security comparison of low-latency layered protocols: TLS 1.3/TFO, QUIC/UDP, QUIC[TLS]/UDP.
- Identify new availability attacks based on our model.
- Help understand the advantages and limitations of novel secure channel establishment protocols.