
Alexandra Boldyreva Shan Chen Pierre-Alain Dupont David Pointcheval
Georgia Institute of Technology École Normale Supérieure

User C Server S

§Example: Log in to your Facebook account…

Secret s Secret s

2

User C Server S

§Example: Log in to your Facebook account…

true server S? true user C?secure communication?

3

User C Server S

§Solution? Authenticated Key Exchange

Secret s Secret s

4

User C Server S

§Solution? Authenticated Key Exchange
§ Session key: protect the communication & authenticate the involved parties

sk sk

Secret s Secret s

5

User C Server S

§Solution? Authenticated Key Exchange
§ Protect against session key compromise (weak corruptions).

sk sk

Secret s Secret s

6

User C Server S

sk sk

key logger, screen capture malware…
Secret s Secret s

7

§ What if the terminal has been compromised? (strong corruptions)
§ Happens in real life, sometimes the terminal may be fully controlled.

User C Server S

sk sk

key logger, screen capture malware…
Secret s Secret s

8

§ What if the terminal has been compromised? (strong corruptions)
§ Some existing protocols can protect the past sessions (forward secrecy).

User C Server S

§ What if the terminal has been compromised? (strong corruptions)
§ No solution for protecting future sessions (because s is leaked)!

sk sk

key logger, screen capture malware…
Secret s Secret s

9

s

s s

s

§Given compromised terminals, a
user’s past and future sessions
from other secure terminals are
still protected, even though the
same long-term secret s is used.

10

s

User Terminal Server

s

§Can not enter long-term secret s into the terminal.
§ Use a challenge-response function instead!

11

chch

s

User Terminal Server

s

12

chch

s

User Terminal Server

r=F(s,ch)

s

compute
r=F(s,ch)

13

chch

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

Password-Authenticated Key Exchange

compute
r=F(s,ch)

14

chch

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

one-time password

15

compute
r=F(s,ch)

chch

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

No long-term secret
on the terminal!

§Long-term secret is never typed in or stored on the terminal.
§ Only the challenge-response pairs (ch,r) can be revealed.

16

compute
r=F(s,ch)

chch

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

§Looks good, but...
§ there are some unsolved problems.

17

compute
r=F(s,ch)

chch

s

User Terminal Server

s

PAKE(pwd=r)

§How to construct F?
§ not trivial: human-computable & secure

r=F(s,ch)

18

compute
r=F(s,ch)

chch

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

§Second approach: additional secure device
§ human user’s burden reduced & more practical

19

compute
r=F(s,ch)

offline

s

chch

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

§Can this protocol achieve our goal?

20

compute
r=F(s,ch)

§How to show a protocol is secure?
§ Define the syntax:

§ What is a protocol?
§ Define the security model:

§ What can the attacker do? What are the security goals?
§ Prove by reduction the protocol satisfies the security goals under

reasonable hardness assumptions.

21

§ We define a new protocol called Human Authenticated Key
Exchange (HAKE) among 3 parties (instead of 2).

s

User Terminal Server

s

sk sk

22

§ Human-memorizable: simple enough to be memorized by an average human.
§ Human-readable/writable: short sequence of digits, letters, etc.

s

User Terminal Server

s

human-readable
human-writable

human-memorizable

23

§Non-trivial extension of the BPR model [BPR00] for PAKE.

s

Client Server

s

24

§Non-trivial extension of the BPR model [BPR00] for PAKE.
§ human interactions between the user and the terminal

s

User Terminal Server

s

25

§What can the attacker do?

s

User Terminal Server

s

secure channel

securesecure

26

§What can the attacker do?
§ pretend to be the true server/user, guess sk...

s

User Terminal Server

s

secure channel

securesecure

read & modify

27

§What can the attacker do?
§ corrupt the current session, analyze the user’s long-term secret s

s

User Terminal Server

s

secure channel

securesecure

read (& modify)

28

read & modify

§We model strong corruptions for all past and future sessions.
§ BPR only deals with past sessions for such active attackers.

s

User Terminal Server

s

secure channel

securesecure

read (& modify)

29

read & modify

s

s s

s

§What are the security goals?
§ privacy and authentication for

past and future sessions from
other secure terminals (given
compromised terminals)

§Terminologies:
§ Privacy: no information is leaked

about the session key.
§ Authentication: each party (user

or server) builds a secure session
with the right other party.

30

chch

§ Is this protocol secure?

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

31

chch

§ Is this protocol secure? No!
§ Replay any challenge observed before to run a fake server.

s

User Terminal Server

r=F(s,ch)

s

PAKE(pwd=r)

32

§How to prevent replay attack? Joint coin-flipping!
§ Uses commitment scheme to guarantee the random challenge is

determined by both the terminal and the server.

ch

s

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

PAKE(pwd=r)

33

ch

s

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

PAKE(pwd=r)

§How to construct the Human-Compatible (HC) function F?
§ human-readable & writable & computable…

34

ch

s

User Terminal Server

s

joint coin-flipping
ch

PAKE(pwd=r)

observes (ch,r)

§ Unforgeability: Given (ch,r) pairs (some of which may be adaptive),
the attacker can not forge the response to a new random challenge.

r=F(s,ch)

35

§Only-Human HC function
§😀 The user requires nothing but his/her brain.
§😱 Hard to construct:

§ too simple: easy to break
§ too complex: hard for human users to compute

§Token-Based HC function
§😱 The user requires an additional device such as RSA SecurID.
§😀 Very easy to get:

§ E.g., pseudorandom function (PRF)

36

§Human-computable function proposed by [BBDV16].
§ In their construction (recall r=F(s,ch)):

§ challenge ch = several sets of numbers (represented by images)
§ response r = several digits
§ long-term secret s = random mapping from images to digits

§To use their function, need to show:
§ s is human-memorizable, F is human-computable.
§ HC function in [BBDV16] is secure in our model.

37

§The following 8 slides are adapted from the presentation by
[BBDV16].

38

Image I
…

𝝈(I) 9 3 … 6

§Random Mapping
§ 𝝈: I1,… ,In → 0,1,… , 9

§Hard to memorize
§ mnemonics to help the user

39

adapted from [BBDV16]’s presentation

𝝈 = 2 𝝈 = 6

Mnemonics:

Mappings:

40

adapted from [BBDV16]’s presentation

0

1

2

3

4

5

6

7

8

9
41

adapted from [BBDV16]’s presentation

0

1

2

3

4

5

6

7

8

9

Computing the index:

𝝈 + 𝝈 mod 10

= 9+3 mod 10 = 2
42

adapted from [BBDV16]’s presentation

0

1

2

3

4

5

6

7

8

9

Compute the final digit:

𝝈 + 𝝈 + 𝝈

= 7 + 4 + 5 mod 10 = 6
43

adapted from [BBDV16]’s presentation

0

1

2

3

4

5

6

7

8

9

Password: 6

Username: shan

44

adapted from [BBDV16]’s presentation

Password:

Username: shan

*5

0

1

2

3

4

5

6

7

8

9
45

adapted from [BBDV16]’s presentation

0

1

2

3

4

5

6

7

8

9

Password:

Username: shan

**9

46

adapted from [BBDV16]’s presentation

§Main Issue: Is the secret mapping human-memorizable?
§ Entropy is huge (but expected): possible mappings.
§ Usability experiment: n=100 images in 2 hours.

§The function in [BBDV16] is not perfectly suitable for humans.
But functions with better usability may be proposed in the
future.

§The main contribution of our HAKE protocol is to provide a
framework that can allow for any secure HC functions.

10!

47

§ [BBDV16] HC function security:
§ Unforgeable given not too many random challenge-response pairs
§ Based on the hardness of the random planted constraint satisfiability

problems (RP-CSP)
§ In our setting:

§ Thanks to PAKE, random challenge-response pairs are only
observed from compromised sessions instead of all sessions.

§ We proved an extended security theorem to tolerate a limited
number of adaptive challenge-response pairs.

§ HC function security is also based on an assumption similar to the
one-more unforgeability assumption [BNPS03].

48

§First generic HAKE protocol!
§ secure Only-Human HC function F & secure PAKE

ch

s

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

PAKE(pwd=r)

49

§Looks great! Are we done?

ch

s

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

PAKE(pwd=r)

50

§ If the terminal is fully controlled by the attacker:
§ many adaptive (ch,r) pairs may reveal the long-term secret s
§ need explicit authentication

ch

s

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

PAKE(pwd=r)

fake server

51

§ Introduce an additional confirmation round to Basic HAKE.

s

User Terminal Server

s

ch

r=F(s,ch) PAKE(pwd=r)

joint coin-flipping
ch

ch’ Enc(k,ch’)k k

Enc(k,r’)r’

Verify r’ ?= F(s,ch’)

52

§Detect the compromised terminal & Authenticate server

s

User Terminal Server

s

ch

r=F(s,ch) PAKE(pwd=r)

joint coin-flipping
ch

ch’ Enc(k,ch’)k k

Enc(k,r’)r’

Verify r’ ?= F(s,ch’)

53

§Theorem. Confirmed HAKE is secure if
§ Only-Human HC function F is unforgeable ([BBDV16])
§ PAKE is secure (EKE [BM92] in ideal-cipher model)
§ Authenticated encryption is secure (Encrypt-then-MAC)
§ Commitment scheme is secure (H(m,r) in the RO model)

54

§What if the user has an additional device?

ch

User Terminal Server

r=F(s,ch) PAKE(pwd=r)

sjoint coin-flipping
ch

ch’ Enc(k,ch’)k k

Enc(k,r’)r’

Verify r’ ?= F(s,ch’)

55

offline

s

§With an additional device, we can instantiate F with Token-
Based HC functions, e.g., pseudorandom function (PRF).

§Strong security: PRF is unforgeable given computationally
unlimited number of adaptive challenge-response pairs!
§ no need to hide the responses (allows for a simplified PAKE protocol

with weaker security)
§ no urgent need for explicit authentication (less rounds)

56

ch

User Terminal Server

r=F(s,ch) sPAKE(pwd=r)

s

joint coin-flipping
ch

57

§ Initial Device-Assisted HAKE protocol.

offline

s

ch

User Terminal Server

r=F(s,ch) sPAKE(pwd=r)

s

joint coin-flipping
ch

Replace the secure PAKE with
our simplified PAKE (sPAKE)

Pseudorandom Function (PRF)

58

offline

s

ch

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

§ Can we simplify this protocol further?

sPAKE(pwd=r)

59

offline

s

ch

User Terminal Server

r=F(s,ch)

s

joint coin-flipping
ch

§ Can we simplify this protocol further? Yes, we can!

No need to choose ch at random!

sPAKE(pwd=r)

60

offline

s

§ Very simple protocol!
§ Delay depends on the length of a single timeframe (usually several seconds).
§ Computational load is 30% less than the most efficient one-time-PAKE [PS10, AP05].

User Terminal Server

r=F(s,t) sPAKE(pwd=r)

sUse time t as the challenge!

61

offline

s

§We proposed the first user authentication and key exchange
protocols that can tolerate strong corruptions on the client-
side.
§ Basic HAKE, Confirmed HAKE.

§We proposed very efficient Device-Assisted HAKE protocols
that are also secure in case of strong corruptions.
§ Simplified Basic HAKE, Time-Based HAKE.

62

§Find Only-Human HC functions that can tolerate more
adaptive (ch,r) pairs.

§Prove the security of the HC function in [BBDV14] without the
one-more unforgeability assumption and improve its usability.

§Design a coin-flipping protocol directly between a human
user and a server (to prevent adaptive (ch,r) pairs).

§Build an asymmetric version of the HAKE protocols (similar
to the verifier-based PAKE) where no long-term secret is
stored on the server.

63

§Thanks!

64

§ Diffie-Hellman + commitment scheme (more efficient, no encryption)

Terminal Server

pwdpwd

𝑋!, 𝑐!

𝑥! ← ℤ", 𝑋! = 𝑔#!
(𝑐! , 𝑠!) ← 𝐶𝑜𝑚!(𝑋! , 𝑝𝑤𝑑)

𝑥$ ← ℤ", 𝑋$ = 𝑔#"
(𝑐$, 𝑠$) ← 𝐶𝑜𝑚$(𝑋$, 𝑝𝑤𝑑)

𝑋$, 𝑐$

𝑠!

𝑠$
Verify:
(𝑋! , 𝑝𝑤𝑑) = 𝑂𝑝𝑒𝑛!(𝑐! , 𝑠!)

Verify:
(𝑋$, 𝑝𝑤𝑑) = 𝑂𝑝𝑒𝑛$(𝑐$, 𝑠$)𝒔𝒌 = 𝑿𝑺𝒙𝑻 𝒔𝒌 = 𝑿𝑻𝒙𝑺

65

Scheme Flows Terminal Server Communication
Complexityexp H exp H

1(SPAKE1) 4 3 1 3 1 4𝜆

Time-Based
HAKE

4 2 2 2 2 10𝜆

§The computational load is reduced by ~30% from the most
efficient one-time-PAKE [PS10, AP05].

§Relaxing the PAKE security properties allows a significant
efficiency gain.

66

