Human Computing for Handling
Strong Corruptions in
Authenticated Key Exchange

Alexandra Boldyreva Shan Chen Pierre-Alain Dupont David Pointcheval
Georgia Institute of Technology Ecole Normale Supérieure

Background

9

User C Server S

= Example: Log in to your Facebook account...

Background

true server S? secure communication? true user C?

User C Server S

= Example: Log in to your Facebook account...

Background

User C Server S

= Solution? Authenticated Key Exchange

Background

User C Server S

= Solution? Authenticated Key Exchange
= Session key: protect the communication & authenticate the involved parties

Background

User C Server S

= Solution? Authenticated Key Exchange
= Protect against session key compromise (weak corruptions).

Motivation

Qey logger, screen capture maIwar@

Server S

= What if the terminal has been compromised? (strong corruptions)
= Happens in real life, sometimes the terminal may be fully controlled.

Motivation

@ey logger, screen capture malwar@

Server S

= What if the terminal has been compromised? (strong corruptions)
= Some existing protocols can protect the past sessions (forward secrecy).

Motivation

Qey logger, screen capture maIwar@

Server S

= What if the terminal has been compromised? (strong corruptions)
= No solution for protecting future sessions (because s is leaked)!

Our Goal

= Given compromised terminals, a @ @
user’s past and future sessions \
from other secure terminals are
still protected, even though the
same long-term secret s is used.

Basic Idea

L
_—
£ L

User Terminal Server

= Can not enter long-term secret s into the terminal.
- Use a challenge-response function instead!

11

Basic Idea

&

ch ch

]

& §

Terminal Server

Basic Idea

Terminal

compute
r=F(s,ch)

13

Basic Idea

¥

PAKE (pwd=r) compute

r=F(s,ch)
Terminal | Server

Password-Authenticated Key Exchange

ch

r=F(s,ch)

Q /1] /‘> @

14

Basic Idea

.3

PAKE (pwd=r compute

r=F(s,ch)
Terminal Server

one-time password

Q /1] /‘> @

15

Basic Idea

No long-term secret
on the terminal!

L
/\

ch ch
r=F(s,ch) PAKE (pwd=r) compute
—— ;/ I'=F(S,Ch)
User Terminal Server

=Long-term secret is never typed in or stored on the terminal.
= Only the challenge-response pairs (ch,r) can be revealed.

16

Basic Idea

compute

PAKE (pwd=r) ek

ey

L
g
&

Terminal Server

=Looks good, but...
= there are some unsolved problems.

17

Basic Idea

L
/\

ch ch
r=F(s,ch) PAKE (pwd=r) compute
e ;/ r=F(s,ch)
Terminal Server

= How to construct F?
= not trivial: human-computable & secure

18

Basic Idea with Additional Device

{§ @
— g7

ch
r=F(s,ch) PAKE (pwd=r) = compute
R e ;/ r=F(S,Ch)
Terminal Server

= Second approach: additional secure device
= human user’s burden reduced & more practical

19

Basic Idea

ch /\‘
) r=F(s,ch) PAKE (pwd=r) compute
X R S ;/ r=F(S,Ch)
User Terminal Server

= Can this protocol achieve our goal?

20

Recall: Provable Security Approach

= How to show a protocol is secure?
= Define the syntax:
= What is a protocol?
= Define the security model.:
= What can the attacker do? What are the security goals?

= Prove by reduction the protocol satisfies the security goals under
reasonable hardness assumptions.

HAKE Syntax

L
/\
=

sk sk

Terminal Server

= We define a new protocol called Human Authenticated Key
Exchange (HAKE) among 3 parties (instead of 2).

22

HAKE Syntax

O human-memorizable Q
human-readable /\

human-writable

Terminal Server

= Human-memorizable: simple enough to be memorized by an average human.
= Human-readable/writable: short sequence of digits, letters, etc.

23

HAKE Security Model

L
/\
=

Client Server

= Non-trivial extension of the BPR model [BPRO0O] for PAKE.

24

HAKE Security Model

L
/\
=

Terminal Server

= Non-trivial extension of the BPR model [BPRO0O] for PAKE.
= human interactions between the user and the terminal

25

HAKE Security Model

< secure channel
0 s
=2 secure secure

User Terminal Server

= What can the attacker do?

26

HAKE Security Model

read & modify

secure channel @ i

;/
secure secure

Terminal Server

= What can the attacker do?
= pretend to be the true server/user, guess sk...

27

HAKE Security Model

secure channel & i

secure

secure

Terminal Server

=What can the attacker do?
= corrupt the current session, analyze the user’s long-term secret s

28

HAKE Security Model

secure channel
| s
secure secure

Terminal Server

= We model strong corruptions for all past and future sessions.
- BPR only deals with past sessions for such active attackers.

29

HAKE Security Model

-What are the security goals? @ A

= privacy and authentication for
past and future sessions from
other secure terminals (given
compromised terminals)

= Terminologies:

= Privacy: no information is leaked
about the session key.

= Authentication: each party (user
or server) builds a secure session
with the right other party.

Recall Basic Idea

Ch /\‘
, r=F(s,ch) PAKE (pwd=r)
User Terminal Server

= |s this protocol secure?

31

Recall Basic Idea

ch ch /\‘
r=F(s,ch) PAKE (pwd-=r)
| e
Terminal Server

= |s this protocol secure? No!
= Replay any challenge observed before to run a fake server.

32

Refine Basic Idea

L
/\

PAKE (pwd=r)
S

Terminal Server

= How to prevent replay attack? Joint coin-flipping!

= Uses commitment scheme to guarantee the random challenge is

determined by both the terminal and the server.
33

Human-Compatible (HC) Function

&

joint coin-flipping
ch ch

PAKE (pwd=r)

/\
- &

Terminal Server

= How to construct the Human-Compatible (HC) function F?
= human-readable & writable & computable...

HC Function Security Model

&

joint coin-flipping

ch /\

PAKE (pwd=r)
S

Terminal Server

observes (ch,r)

= Unforgeability: Given (ch,r) pairs (some of which may be adaptive),
the attacker can not forge the response to a new random challenge.

35

HC Function Instantiation

= Only-Human HC function
= & The user requires nothing but his/her brain.

- () Hard to construct:
= oo simple: easy to break
= too complex: hard for human users to compute

- Token-Based HC function
- (& The user requires an additional device such as RSA SecurlD.
= & Very easy to get:
= E.g., pseudorandom function (PRF)

36

Only-Human HC Function Instantiation

= Human-computable function proposed by [BBDV16].

= In their construction (recall r=F(s,ch)):
= challenge ch = several sets of numbers (represented by images)
= response r = several digits

= long-term secret s = random mapping from images to digits

= To use their function, need to show:
= S iIs human-memorizable, F is human-computable.
= HC function in [BBDV16] is secure in our model.

= The following 8 slides are adapted from the presentation by
[BBDV16].

adapted from [BBDV16]’s presentation

Long-Term Secret / Random Mapping

(1) 9 3 6

= Random Mapping
co:{ly, .., } > {01, ...,9}

= Hard to memorize
= mnemonics to help the user

39

adapted from [BBDV16]’s presentation

Long-Term Secret / Random Mapping

Mappings:

Mnemonics:

40

adapted from [BBDV16]’s presentation

Challenge / Sets of Images

adapted from [BBDV16]’s presentation

Computing the Response r=F(s,ch)

Computing the index:

J +0 {m} mod 10
= 9+3 mod 10 = 2

42

adapted from [BBDV16]’s presentation

Computing the Response r=F(s,ch)

Compute the final digit:
non- hnear agal

=7+4+5mod 10 =6 4

43

adapted from [BBDV16]’s presentation

Computing the Response r=F(s,ch)

Username:

Password:

adapted from [BBDV16]’s presentation

Computing the Response r=F(s,ch)

Username:

Password:

adapted from [BBDV16]’s presentation

Computing the Response r=F(s,ch)

Username:

Password:

Usability

=Main Issue: Is the secret mapping human-memorizable?
= Entropy is huge (but expected):10™ possible mappings.
= Usability experiment: n=100 images in 2 hours.

= The function in [BBDV16] is not perfectly suitable for humans.

But functions with better usability may be proposed in the
future.

= The main contribution of our HAKE protocol is to provide a
framework that can allow for any secure HC functions.

Only-Human HC Function Security

-[BBDV16] HC function secuirity:
= Unforgeable given not too many random challenge-response pairs

- Based on the hardness of the random planted constraint satisfiability
problems (RP-CSP)

= |n our setting:

= Thanks to PAKE, random challenge-response pairs are only
observed from compromlsed sessions instead of all sessions.

= We proved an extended security theorem to tolerate a limited
number of adaptive challenge-response pairs.

= HC function security is also based on an assumption similar to the
one-more unforgeability assumption [BNPSO03].

48

Basic HAKE

joint coin-flipping
ch ch

r=F(s,ch) @

Terminal

= First generic HAKE protocol!
= secure Only-Human HC function F & secure PAKE

PAKE (pwd=r)
ey

& §

Server

49

Basic HAKE

o ; &

joint coin-flipping
ch ch
T

,\ r=F(s,ch) PAKE (pwd=r)
‘ R e

@0

User Terminal Server

= Looks great! Are we done?

50

Basic HAKE

Y

fake server joint coin-flipping
ch

-
-

User Terminal Server

= If the terminal is fully controlled by the attacker:
= many adaptive (ch,r) pairs may reveal the long-term secret s
= need explicit authentication

51

Basic HAKE + Additional Round

.
-

k Enc(k,ch’) kK ;/
I

’ Enc(k,r’)
User —— Terminal — Server

Verify r’ ?= F(s,ch’)

= Introduce an additional confirmation round to Basic HAKE.

52

Confirmed HAKE

joint com flipping @

—

PAKE (pwd=r)
S :
S

k Enc(k,ch’) kK \/
I

— Enc(k,r’)
User —— Terminal — Server

Verify r’ ?= F(s,ch’)

= Detect the compromised terminal & Authenticate server

53

Confirmed HAKE

= Theorem. Confirmed HAKE is secure if
= Only-Human HC function F is unforgeable ([BBDV16])
- PAKE is secure (EKE [BM92] in ideal-cipher model)
= Authenticated encryption is secure (Encrypt-then-MAC)
= Commitment scheme is secure (H(m,r) in the RO model)

54

Confirmed HAKE

joint coin-flipping @

ch ch
r=F(s,ch) PAKE (pwd-=r) g
ch’ k Enc(k,ch’) K ;/
E—— E——
r’ Enc(k,r’)

User —— Terminal — Server
Verify r’ 7= F(s,ch’)

= What if the user has an additional device?

55

Device-Assisted HAKE

= With an additional device, we can instantiate F with Token-
Based HC functions, e.g., pseudorandom function (PRF).

= Strong security: PRF is unforgeable given computationally
unlimited number of adaptive challenge-response pairs!

= N0 need to hide the responses (allows for a simplified PAKE protocol
with weaker security)

= no urgent need for explicit authentication (less rounds)

Simplified Basic HAKE

offli

>
D

Terminal

= Initial Device-Assisted HAKE protocol.

&

joint coin-flipping
ch
T

sPAKE (pwd=r)

Q /1] /‘>

Server

57

Simplified Basic HAKE

offline

joint coin-flipping

ch /\

s ch sPAKE (pwd=r
S
Terminal Server
Pseudorandom Function (PRF) Replace the secure PAKE with

our simplified PAKE (sPAKE)

58

Simplified Basic HAKE

offli

>
D

Terminal

= Can we simplify this protocol further?

&

joint coin-flipping
ch
T

sPAKE (pwd=r)

Q /1] /‘>

Server

59

Simplified Basic HAKE

offline
h No need to choose ch at random!

join fl1p1ng
/\
r=F(s,ch) sPAKE (pwd=r)
| &
Terminal Server

= Can we simplify this protocol further? Yes, we can!

60

Time-Based HAKE

— .
h Use time t as the challenge!

sPAKE (pwd=r) /\
ey

s
User Terminal Server

= Very simple protocol!
= Delay depends on the length of a single timeframe (usually several seconds).

= Computational load is 30% less than the most efficient one-time-PAKE [PS10, AP0O5].

61

Summary

= We proposed the first user authentication and key exchange
protocols that can tolerate strong corruptions on the client-
side.
= Basic HAKE, Confirmed HAKE.

=We proposed very efficient Device-Assisted HAKE protocols
that are also secure in case of strong corruptions.
= Simplified Basic HAKE, Time-Based HAKE.

62

Open Problems

= Find Only-Human HC functions that can tolerate more
adaptive (ch,r) pairs.

= Prove the security of the HC function in [BBDV14] without the
one-more unforgeability assumption and improve its usability.

= Design a coin-flipping protocol directly between a human
user and a server (to prevent adaptive (ch,r) pairs).

= Build an asymmetric version of the HAKE protocols (similar
to the verifier-based PAKE) where no long-term secret is
stored on the server.

Any Questions?

= Thanks!

Simplified PAKE (sPAKE)

@ xT(_Zp»XT:ng xS(_ZpiXS:gxs Q
(CTr ST) < ComT(XTr de) XT, Cr (CS' SS) < ComS(XSr de)
Xs, Cs /\
St ~
Verify:

Ss (X7,pwd) = Openr(cr, St)

Terminal Verify: Server
X, pwd) = Openc(ce, S

sk = X (Xs, pwd) pens(cCs, Ss) sk = X,

= Diffie-Hellman + commitment scheme (more efficient, no encryption)

65

Time-Based HAKE vs One-Time-
PAKE

1(SPAKE1) 4 3 1 3 1 41
Time-Based 4 2 2 2 2 101
HAKE

= The computational load is reduced by ~30% from the most
efficient one-time-PAKE [PS10, APO5].

= Relaxing the PAKE security properties allows a significant
efficiency gain.

